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Chapter 1

Metrics and Norms

Definition 1.1. Let X be a non-empty set. A function ρ : X × X → R is
called a metric on X if it satisfies

• ρ(x, y) > 0 if x 6= y with equality if and only if x = y

• ρ(x, y) = ρ(y, x)

• ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

where x, y, z ∈ X.

Example 1.2. The function ρ(x, y) = |x− y| is a metric on both R and C.

Example 1.3. Consider Rn and Cn. Then the function

ρ(x, y) =

(
n∑
i=1

|xi − yi|2
) 1

2

is a metric for these spaces. Here xi and yi are the ith coordinates of the
points x and y respectively.

Example 1.4. Consider X = C[a, b], the set of all continuous functions on
[a, b]. Then the function

ρ(f, g) = sup
x∈ [a,b]

|f(x)− g(x)|

is a metric on X.
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Example 1.5. Consider X = B(S), the set of all bounded functions on a
set S. Then the function

ρ(f, g) = sup
x∈S
|f(x)− g(x)|

is a metric on X.

Example 1.6. Consider an arbitrary set X. Then the function

ρ(x, y) =

{
1 if x 6= y
0 if x = y

is a metric on X called the discrete metric.

Definition 1.7. If X is a non-empty set and ρ a metric on X, we define the
pair (X, ρ) as a metric space.

Definition 1.8. Let (X, ρ) be a metric space and A ⊆ X a subset. The
metric space (A, ρ) is called a subspace of (X, ρ).

Example 1.9. C[a, b] is a subspace of B[a, b] with their usual metric for
−∞ < a < b < ∞. Indeed, any continuous function on a bounded closed
interval is always bounded.

Definition 1.10. Let X be a vector space over R (or C). A function || · || :
X → R is called a norm if it satisfies the following axioms

• ||x|| > 0 if x 6= 0 and ||0|| = 0

• ||λx|| = |λ| ||x| ∀x ∈ X, ∀λ ∈ R (or λ ∈ C)

• ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X

A linear space equipped with a norm is called a normed space.

Proposition 1.11. Let || · || be a norm on X. Then the function ρ(x, y) =
||x− y|| is a metric on X.

Proof.

1. We first have to show that ρ(x, y) ≥ 0 with equality if and only if x = y.
Since || · || is a norm on X, we have that ρ(x, y) = ||x−y|| > 0. We also
have that ||0|| = 0 ⇐⇒ ||x − x|| = 0. We see that ρ(x, y) = 0 ⇐⇒
x = y.
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2. We now have to show that ρ(x, y) = ρ(y, x). We have that ρ(x, y) =
||x−y||. Now since ||·|| is a norm, we know that ||λx|| = |λ| ||x|| ∀λ ∈ R.
Choosing λ = −1, we see that ρ(x, y) = ||x− y|| = ||y − x|| = ρ(y, x).

3. Finally, we show that ∀x, y, z ∈ X, ρ(x, z) ≤ ρ(x, y) + ρ(y, z). We have
that ρ(x, z) = ||x − z|| = ||x − y + y − z|| = ||(x − y) − (z − y)|| ≤
||x− y||+ ||z − y|| = ||x− y||+ ||y − z|| = ρ(x, y) + ρ(y, z).

Example 1.12. The metric in Example 1.2 is generated by the norm ||x|| =
x. The metric in Example 1.3 is generated by ||x|| = (

∑n
i=1 |xi|2)

1
2 .

Example 1.13. The metrics in Examples 1.4 and 1.5 are generated by

||f || = sup
x∈ [a,b]

|f(x)|

||f || = sup
x∈S
||f(x)||



Chapter 2

Convergence

Definition 2.1. Consider a sequence of elements xn of a metric space (X, ρ).
xn is said to converge to x ∈ X if

∀ ε > 0 ∃nε ∈ N such that ∀n ≥ nε, ρ(xn, x) ≤ ε

Lemma 2.2. Let (X, ρ) be a metric space and xn a sequence of elements in
X. Then xn → x in (X, ρ) if and only if ρ(xn, x)→ 0 in R.

Proof. This follows directly from the definition of convergent sequences in a
metric space and on the real line.

Lemma 2.3. Consider a sequence of elements xn in (X, ρ). If rn are non-
negative numbers such that rn → 0 in R and ρ(xn, x) ≤ rn for all sufficiently
large n then xn → x in (X, ρ).

Proof. By the definition of convergence on the real line, we have that

∀ ε > 0, ∃nε ∈ N such that ∀n ≥ nε, rn ≤ ε

Now fix ε > 0 and choose nε satisfying above. We see that ρ(xn, x) ≤ rn ≤
ε ∀n ≥ nε. This implies that ρ(xn, x) → 0 in R and thus by the previous
lemma, xn → x in (X, ρ).

Definition 2.4. Let ρ1 and ρ2 be two metrics defined on a set X. We say
that the ρ1 and ρ2 are equivalent when

xn → x in (X, ρ1) ⇐⇒ xn → x in (X, ρ2)

4
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Definition 2.5. We define uniform convergence on S to be convergence
in the metric space B(S).

Lemma 2.6. Let fn be a sequence of functions in B(S) and f ∈ B(S). Then

fn → f ⇐⇒ ∀ ε > 0 ∃nε ∈ N such that ∀n ≥ nε, ∀x ∈ S, |fn(x)− f(x)| ≤ ε

Proof. First we note that fn → f if and only if ρ(fn, f) = supx∈S |fn(x) −
f(x)| → 0. By definition, we have that the sequence of real numbers
supx∈S|fn(x)− f(x)| converges to 0 if and only if

∀ ε > 0 ∃nε ∈ N such that ∀n ≥ nε, supx∈S|fn(x)− f(x)| ≤ ε

Hence we just have to show that supx∈S|fn(x) − f(x)| ≤ ε if and only if
|fn(x)− f(x)| ≤ ε ∀x ∈ S.

=⇒ :
Now since supx∈S|fn(x)−f(x)| ≤ ε, it follows that |fn(x)−f(x)| ≤ supx∈S |fn(x)−
f(x)| ≤ ε ∀x ∈ S.

⇐= :
Now assume that ∀ ε > 0 ∃nε ∈ N such that ∀n ≥ nε,∀x ∈ S, |fn(x) −
f(x)| ≤ ε. Since the supremum of a set coincides with the least upper
bound, we can always find a δ > 0 and a point xδ ∈ S such that

sup
x∈S
|f(x)− fn(x)| ≤ δ + |f(xδ)− fn(xδ)| ≤ δ + ε

We can choose δ to be arbitrarily small and in the limit δ → 0, we have that
supx∈S |f(x)− fn(x)| ≤ ε.

Remark. A sequence of functions fn ∈ B(S) converges to f ∈ B(S) point-
wise if ∀x ∈ S,∀ ε > 0,∃nε,x ∈ Z such that |f(x) − fn(x)| ≤ ε for all
n > nε,x. Such an integer may depend on x. If for any ε, the set {nε,x}x∈S
is bounded above then fn → f uniformly.



Chapter 3

Open and Closed Sets

For the following definitions and results, let (X, ρ) be a metric space and
r > 0 some real constant.

Definition 3.1. Let α ∈ X. Then the set

Br(α) = {x ∈ X | ρ(x, α) < r }

is called an open ball of radius r centered at α. The set

Br[α] = {x ∈ X | ρ(x, α) ≤ r }

is called a closed ball of radius r centered at α.

Definition 3.2. Let α ∈ X and A ⊆ X a subset. We say that A is a
neighbourhood of α if there exists an open ball Br(α) ⊆ A for some r > 0.

Remark. We can reformulate the definition of convergence of a sequence
using open balls as follows. A sequence xn in a metric space converges to
a point x if for any ball Bε(x), there exists an integer nε such that for all
n > nε then xn ∈ Bε(x).

Theorem 3.3. Consider two metrics ρ and σ on the same set X. Then ρ
and σ are equivalent if and only if every open ball Bρ

r (x) contains an open
ball Bσ

s (x) and every open ball Bσ
s (x) contains an open ball Bρ

t (x).

Proof.

=⇒ : Assume that the two metrics are equivalent. Furthermore, assume
there exists an open ball Bρ

r (x) which does not contain an open ball Bσ
s (x)

6
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with s > 0. Consider a sequence sn → 0 and let xn ∈ Bσ
sn(x) and xn /∈ Bρ

r (x).
Then obviously, xn → x in the metric σ. However, xn does not converge to
x in the metrox ρ because xn /∈ Bρ

r (x) for any n. Hence the metrics ρ and σ
are not equivalent. But this contradicts our assumption.

⇐= : Now assume that every open ball Bρ
r (x) contains an open ball Bσ

s (x)
and every open ball Bσ

s (x) contains an open ball Bρ
t (x). Given any sequence

xn
σ→ x then for any r > 0, we can choose an s > 0 and a corresponding ns

such that

xn ∈ Bσ
s (x) ⊆ Bρ

r (x)

for all n > ns. Hence xn
ρ→ x. Applying the same argumentation to a ρ-ball

contained in a σ-ball implies given any sequence xn
ρ
x then also xn

σ
x.

3.1 Open sets

Definition 3.4. Let A ⊆ X be a subset. We say that A is open if it contains
a ball about each of its points.

Lemma 3.5. An open ball in a metric space (X, ρ) is open.

Proof. Let x ∈ Br(α). Then ρ(x, α) = r−ε for some ε > 0. Consider another
point y ∈ Bε(x). Then ρ(y, x) < ε and by the triangle inequality we have
that

ρ(y, α) ≤ ρ(y, x) + ρ(x, α) < ε+ r − ε = r

Therefore, y ∈ Br(α) for all y ∈ Bε(x). Hence, Bε(x) ⊆ Br(α).

Theorem 3.6. Let (X, ρ) be a metric space. Then we have that

1. X and ∅ are both open

2. the union of any collection of open subsets of X is open

3. the intersection of any finite collection of open subsets of X is open
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Proof.

Part 1: The whole space is obviously open as it contains all open balls. The
empty space contains no points and is therefore trivially open.

Part 2: Let x ∈ ∪nAn for some open sets An. Then x ∈ Ai for some i.
Since Ai is open, it contains an open ball around x. Obviously this ball is
also contained in An and thus An is open.

Part 3: Let A1, . . . , Ak be open sets and x ∈ ∪kn=1An. Then x ∈ An
for every n. Since each An are open, for each n there exist an rn > 0
such that Brn(x) ⊆ An. Now let r = min{r1, . . . , rn}. Then r > 0 and
Br(x) ⊆ Brn(x) ⊆ An for all n = 1, . . . , k. Hence Br(X) ⊆ ∩kn=1An.

Lemma 3.7. A set is open if and only if it is the union of a collection of
open balls.

Proof. =⇒ : Let A be an open set. We have to show that it is the union of
a collection of open balls. Let x ∈ A. Since A is open, there exists an open
ball B(x) around x. Then obviously A = ∪x∈AB(x).

⇐= : Now assume that A is the union of a collection of open balls. We
know that open balls are open sets and also arbitrary unions of open sets are
again open. Therefore A must be open.

Definition 3.8. Let x ∈ A. We say that x is an interior point of A if there
exists an open ball Br(x) ⊆ A for some r > 0. We define the interior of a
set A to be the union of all open sets contained in A. In other words, it is the
maximal open set contained in A. The interior of A is denoted by int(A).

3.2 Closed sets

Definition 3.9. Let X be a set and A ⊆ X a subset. We say that a point
x ∈ X is a limit point of the set A if every ball about x contains a point of
A distinct from x. We denote the set of limit points of A by A′.

Lemma 3.10. Let A be a set. Then x is a limit point of A if and only if
there is a sequence xn of elements of A distinct from x which converges to x.
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Proof.

=⇒ : Let x be a limit point of A. By the definition of a limit point,
we know that every open ball around x contains a point of A distinct from
x. Consider the ball B 1

n
(x). By the previous statement, such a ball will

contain a point of a sequence xn ∈ A which is distinct from x. Since this ball
converges to x, obviously xn → x.

⇐= : Now assume that there exists a sequence xn of elements of A distinct
from x that converges to x. It follows trivially that any ball around x must
contain an element of xn.

Definition 3.11. We say that a set is closed if it contains all of its limit
points.

Lemma 3.12. A set A is closed if and only if the limit of any convergent
sequence of elements of A lies in A.

Proof. =⇒ : Assume that A is closed. By definition, it contains all of its
limit points. Since the limit of a convergent sequence either coincides with
an element of A or one of its limit points, all convergent sequences must
converge to a point in A.

⇐= : Now assume that the limit of any convergent sequence of elements
of A lies in A. By definition, a limit point of A is a limit of some sequence
{xn} ⊆ A. It follows that A must contain all of its limit points and thus is
closed.

Lemma 3.13. Let (X, ρ) be a metrix space. Then any closed ρ-ball in X is
a closed set.

Proof. Let xn be a convergent sequence lying in the closed ball Br[α] with a
limit x. By the triangle inequality, we have that

ρ(x, α) ≤ ρ(x, xn) + ρ(xn, α) ≤ ρ(x, xn) + r

Since xn → x, ρ(x, xn) → 0 for large n. This implies that ρ(x, α) ≤ r and
thus x ∈ Br[α]. Hence Br[α] contains all of its limit points and it must be a
closed set.
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Definition 3.14. Let X be a set and A ⊆ X a subset. Then we define the
complement C(A) of A to be all points x ∈ X which do not belong to A.

Theorem 3.15. If A is open then C(A) is closed. If A is closed then C(A)
is open.

Proof. Let A be open. Then for every point of A there exists an open ball
around the point, contained in A. Clearly such a ball does not contain any
points from C(A). Therefore no point of A can be a limit point of A. Indeed,
if there did exist such a limit point then there would exist an open ball
around the point containing some points of C(A) distinct from the point. We
must therefore have that C(A) contains all of its limit points and is therefore
closed.
Now assume that A is closed. Then, by definition, A contains all of its limit
points. Therefore C(A) cannot contain a limit point of A. Therefore for any
x ∈ C(A), there exists a ball Br(X) which is contained in C(A). Thus C(A)
is open.

Theorem 3.16. Let (X, ρ) be a metric space. Then

1. X and ∅ are closed

2. arbitrary intersections of closed sets are closed

3. the union of any finite collection of closed sets is closed

Proof. The proof is left as an exercise to the reader. It follows from Theorem
3.6, Theorem 3.15 and the application of De Morgan’s Law.

Definition 3.17. Let A be a set. We define the closure, denoted A, of A
to be the intersection of all closed sets containing A. In other words, it is the
minimal closed set containing A.

Theorem 3.18. Let A be a set. Then A = A ∪ A′.

Proof. We first show that A∪A′ is a closed set. Let x ∈ C(A∪A′). Obviously
x /∈ A′. Therefore there exists a ball Br(x) which does not contain elements
of A distinct from x. Since also x /∈ A, we have that Br(x) ⊆ C(A). Since
Br(x) is an open ball, it must be an open set. Hence for any y ∈ Br(x), there
exists a ball Bε(y) ⊆ Br(x) ⊆ C(A) that also does not contain any points
of A distinct from x. Hence Br(x) ⊆ C(A ∪ A′). We see that we can excise
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an open ball around any point of C(A∪A′) and therefore C(A∪A′) is open.
This implies that A ∪ A′ is closed.
It now suffices to show that A ∪ A′ is the minimal closed set containing A.
Let K be a closed set such that A ⊆ K ⊆ A∪A′ and K 6= A∪A′. Obviously
K must not contain at least one limit point of A′. Therefore there must be
a sequence of elements xn ∈ A ⊆ K which converges to this point. But we
know that a set is closed if and only if it contains the limit point of any of
its convergent sequences. Therefore K is not closed - a contradiction.

Corollary 3.19. Let A be a set. Then x ∈ A if and only if there exists a
sequence {xn} ⊆ A which converges to x.

Proof.

=⇒ : Assume that x ∈ A. Then either x ∈ A or x ∈ A′. Assume that
x ∈ A. Then obviously the sequence {x, x, . . . , x} ⊆ A converges to x. Now
assume that x ∈ A′. Lemma 3.10 implies that there must exist a sequence
xn of elements of A converging to x.

⇐= : Now assume that there exists a sequence {xn} consisting of elemments
of A which coverges to x. If xn = x for some n then x ∈ A. If not then
Lemma 3.11 implies that x ∈ A′. Therefore x ∈ A = A ∪ A′.

Example 3.20. Let (X, ρ) be a metric space equipped with the discrete metric

ρ(x, y) =

{
1 if x 6= y
0 if x = y

Then the ρ-balls are given by

Br[a] =

{
{a} if r < 1
X if r ≥ 1

, Br(a) =

{
{a} if r ≤ 1
X if r > 1

Since the open ball is open, any point is an open set. Since the union of open
sets is open, we have that every subset of X is open. It therefore follows that
every subset of X is also closed (as it is they are complements of open sets).

Theorem 3.21. In a normed linear space, Br(α) = Br[α].
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Proof.

Br(α) ⊆ Br[α]: Obviously, Br(α) ⊆ Br[a]. Now the closure of a set is the
minimal closed set containing that set. We also know that closed balls are
closed sets. Hence we have that Br(α) ⊆ Br[α].

Br(α) ⊇ Br[α]: We need to show that Br[α] ⊆ Br(α) = Br(α) ∪ (Br(α))′.
Let x ∈ Br(α). Then ρ(α, x) ≤ r. If ρ(α, x) < r then x ∈ Br(α) and we
are done. Hence assume that ρ(α, x) = r and consider xn = x−1n (α− x). We
have that

ρ(xn, α) = ||xn − α||
= ||x− α + n−1(α− x)||
= (1− n−1)||xn − α||
= (1− n−1)r
< r

This shows that xn ∈ Br(α) for all n. Now,

ρ(xn, x) = ||xn − x||
= ||n−1(α− x)||
= n−1||x− α||
= n−1r

We see that in the limit n → ∞, ρ(xn, x) → 0. Therefore x is a limit point
of the set Br(α) and x ∈ (Br(α))′.



Chapter 4

Continuity

Definition 4.1. Let (X, ρ) and (Y, d) be metric spaces. A map T : X → Y
is said to be continuous at α ∈ X if

∀ ε > 0,∃ δ > 0 such that whenever ρ(x, α) < δ then d(Tx, Tα) < ε

The map T is said to be continuous if it is continuous at every point α ∈ X.

Theorem 4.2. Let (X, ρ) and (Y, d) be metric spaces and T : X → Y a
mapping. Then T is continuous at α ∈ X if and only if for every sequence
xn converging to α in (X, ρ), the sequence Txn converges to Tα in (Y, d).

Proof. =⇒ : First assume that T is continuous at α ∈ X and xn → α in
(X, ρ). We need to show that for all ε > 0, there exists an nε such that for
all n > nε, d(Txn, Tα) ≤ ε.
Now fix ε > 0 since T is continuous at α, we can always find a δ > 0 such
that ρ(xn, α) < δ =⇒ d(Txn, Tα). Since the sequence xn converges to α
in (X, ρ) for this δ there exists an nδ such that ρ(xn, α)δ. Obviously, taking
nε := nδ satisfies the condition.

⇐= : Now assume that for any sequence xn that converges to α in (X, ρ),
the sequence Txn converges to Tα in (Y, d). Suppose, for a contradiction,
that T is not continuous. Then there exists an ε0 > 0 such that for any
δ > 0, there is an x ∈ X for which ρ(x, α) < δ and d(Tx, Tα) ≥ ε0. We can
choose xn ∈ X such that ρ(xn, α) < 1

n
and d(Txn, Tα) ≥ ε0. Then xn → α

in (X, ρ) but Txn does not converge to Tα in (Y, d) - a contradiction.

13
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Theorem 4.3. Let (X, ρ), (Y, d) and (Z, σ) be metric spaces. Consider a
continuous at α mapping T1 : (X, ρ) → (Y, d) and a continuous at T1α
mapping T2 : (Y, d) → (Z, σ). Then T2T1 : (X, ρ) → (Z, σ) is continuous at
α.

Proof. Let xn be a sequence converging to α in (X, ρ). Since T1 is continuous
at α, T1xn → T1α in (Y, d). Now since T2 is continuous at T1α, T2T1xn =
T2(T1xn) → T2(T1α) in (Z, σ). Applying Theorem 4.3, we see that T2T1 is
continuous.

Lemma 4.4. Let (X, p) be a metric space and x0 ∈ X a fixed element. Then
T : x→ ρ(x, x0) is a continuous map from (X, ρ) to R.

Proof. We need to show that given a sequence xn → α in (X, ρ), Txn → Tα
in R. We have that

|Txn − Tα| = |ρ(xn, x0)− ρ(α, x0)|
= |ρ(xn, x0) + ρ(xn, α)− ρ(xn, α)− ρ(α, x0)|
≤ |ρ(xn, α)|+ |ρ(xn, x0)− ρ(xn, α)− ρ(α, x0)|
≤ ρ(xn, α) + |ρ(xn, α) + ρ(α, x0)− ρ(xn, α)− ρ(α, x0)|
≤ ρ(xn, α)

This implies that Txn → Tα whenever xn → α.

Definition 4.5. Let (X, ρ) and (Y, d) be metric spaces. Then we can define
a metric on their Cartesian product X × Y

σ((x1, y1), (x2, y2)) =
√

(ρ(x1, x2))2 + (d(y1, y2))2

Remark. We note that given the continuity of a function of two variables
with the above metric is not the same as continuity in each variable seperately.
For example

f(x, y) =

{ xy
x2+y2

if x2 + y2 6= 0

0 if x = y = 0

defined on R2 = R×R is continuous at the origin in each variable seperately
but discontinuous as a function of two variables.
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Definition 4.6. Given a mapping T : X → Y and a subset A ⊆ Y . The set

T−1(A) = {x ∈ X | Tx ∈ A }

is called the inverse image of A.

Definition 4.7. (Alternate formulation of continuity)
Let (X, ρ) and (Y, d) be metric spaces. A mapping T : X → Y is said to be
continuous at α ∈ X if for any open ball Bε(Tα) about Tα, there exists a
ball Bδ(α) about α such that Bδ(α) ⊆ T−1(Bε(Tα)).

Theorem 4.8. Let (X, ρ) and (Y, σ) be metric spaces and T : X → Y a
mapping from X → Y . Then the following are equivalent:

1. T is continuous

2. the inverse image of every open subset of Y is an open subset of X

3. the inverse image of every closed subset of Y is a closed subset of X

Proof. We shall prove the theorem in the order (2) ⇐⇒ (3), (1) ⇐⇒ (2).

(2) ⇐⇒ (3): The inverse image of the complement of a set A is exactly the
complement of the inverse image T−1(A) hence the equivalence of (2) and
(3) follows from Theorem 3.15.

(1) =⇒ (2): Assume that T is continuous and let A be an open subset of
Y and x ∈ T−1(A) ⊆ X. Since A is open, there exists an open ball Bε(Tx)
about the point Tx such that Bε(Tx) ⊆ A. Now since T is a continuous
map, we have that there exists an open ball Bδ(x) ⊆ T−1(Bε(Tx)) ⊆ T−1(A).
Therefore for every point we can excise an open ball around any x ∈ T−1(A).
It thus follows that T−1(A) is an open set.

(2) =⇒ (1): Now assume that the inverse image of any open set is
open. Let x ∈ X and Bε(Tx) be a ball around Tx ∈ Y . The inverse image
T−1(Bε(Tx)) is an open set containing the point x. Therefore there is an open
ball Bδ(x) about x such that Bδ(x) ⊆ T−1(Bε(Tx)). Hence T is continuous.

Definition 4.9. Let X and Y be normed linear spaces equipped with the
norms || · ||X and || · ||Y respectively. We say that a linear map T : X → Y
is bounded if there exists a positive constant C such that ||Tx||Y ≤ C||x||X
for all x ∈ X.



CHAPTER 4. CONTINUITY 16

Theorem 4.10. Let (X, ρ) and (Y, d) be normed spaces and T : X → Y a
linear map. Then the following are equivalent:

1. T is continuous

2. T is continuous at 0

3. T is bounded

Proof. (1) =⇒ (2) is satisfied trivially. We shall prove the theorem in the
order (2) =⇒ (3) =⇒ (1).

(2) =⇒ (3): Let T be continuous at 0. Then there exists a δ > 0 such
that ρ(0, z) = ||z|| ≤ δ =⇒ d(0, T z) = ||Tz|| ≤ 1. For arbitrary x 6= 0 in
X, the element z = δ||x||−1x satisfies the condition ||z|| = δ implying that
||Tz|| ≤ 1.
Now since T is a linear map, we have that

||Tx|| = ||T (zδ−1||x||)|| = δ−1||x|| ||Tz|| ≤ d−1||x||

Obviously this inequality is valid for x = 0 as well. Therefore T is bounded
with C = δ−1.

(3) =⇒ (1): Now assume that T is bounded. Then ||Tx||Y ≤ C||x||X for
all x ∈ X. Fix ε > 0 and take z ∈ X. Furthermore, set δ = C−1ε. Then for
all x ∈ X such that ρ(x, z) = ||x− z||X < δ, we have that

d(Tx, Tz) = ||Tx− Tz||Y = ||T (x− z)||Y ≤ C||x− z||X < ε

Hence T is continuous.



Chapter 5

Completeness

5.1 Cauchy Sequences

Definition 5.1. Let (X, ρ) be a metric space. We say that a sequence of
elements xn ∈ X is a Cauchy sequence if

∀ ε > 0,∃nε such that ∀n > nε, ρ(xn, xm) < ε

Lemma 5.2. Let (X, ρ) be a metric space. Then every convergent sequence
in X is a Cauchy sequence.

Proof. Let xn → x be a convergent sequence. Then for any ε > 0, there
exists an nε such that ρ(xn, x) < ε

2
for all n > nε. By the triangle inequality,

it follows that

ρ(xn, xm) ≤ ρ(xn, x) + ρ(xm, x) <
ε

2
+
ε

2
= ε

for all n,m > nε. Hence xn is a Cauchy sequence.

Lemma 5.3. Let (X, ρ) be a metric space. If a Cauchy sequence in X has
a convergent subsequence then it is convergent to the same limit.

Proof. Let xn be a Cauchy sequence and xnk → x a convergent subsequence.
By definition we have that for any ε > 0, there exists an nε such that
ρ(xn, xnk) < ε

2
and ρ(xnk , x) < ε

2
for all n, nk > nε. By the triangle in-

equality, it follows that

ρ(xn, x) ≤ ρ(xnk , x) + ρ(xn, xnk) <
ε

2
+
ε

2
= ε

for all n > nε. Therefore xn → x.

17
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5.2 Complete Metric Spaces

Definition 5.4. Let (X, ρ) be a metric space. We say that (X, ρ) is com-
plete if any Cauchy sequence {xn} ⊆ X converges to a limit x ∈ X.

Theorem 5.5. Let (X, ρ) be a metric space. Then there exists a complete
metric space (X̃, ρ̃) such that

1. X ⊆ X̃ and ρ̃(x, y) = ρ(x, y) whenever x, y ∈ X

2. for all x̃ ∈ X̃ there exists a sequence of elements xn ∈ X such that
xn → x̃ in the limit n→∞ in the space (X̃, ρ̃)

We say that the metric space (X̃, ρ̃) is the completion of (X, ρ).

Theorem 5.6. Let (A, ρ) be a subspace of a complete metric space (X, ρ).
Then (A, ρ) is the completion of (A, ρ).

Proof. Consider a Cauchy sequence {xn} ⊆ A. Now since (X, ρ) is complete,
we are guaranteed that that xn → x for some x ∈ X. But A is closed and
must contain all its limit points. Therefore x ∈ A. Hence (A, ρ) is complete.
By Corollary 3.19, we know that an element of A must be the limit point of
a sequence {sn} ⊆ A. Therefore (A, ρ) myst be the completion of (A, ρ).

Example 5.7. Let (X, ρ) be the rational numbers equipped with the standard
metric ρ(x, y) = |x− y|. Consider a sequence that converges to an irrational
number such as (3, 3.1, 3.14, 3.141, . . . )→ π. Obviously such a sequence does
not have a limit point in the rational numbers. Therefore X is not complete.
We define the real numbers R equipped with the metric ρ to be the completion
of X.

Example 5.8. The complex numbers C equipped with the standard metric
ρ(x, y) = |x − y| are complete. Indeed consider a sequence {cn} ⊆ C. Let
cn = an + ibn for some an, bn ∈ R. Then {cn} is a Cauchy sequence if and
only if the sequences {an} and {bn} are Cauchy sequences of real numbers.
We also have that the sequence {cn} converges if and only if the sequences
{an} and {bn} converge.

Theorem 5.9. Consider the set B(S) equipped with the metric ρ(f, g) =
supx∈S |f(x)− g(x)|. Then B(S) is complete.
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Proof. We have to show that given a Cauchy sequence {fn} ⊆ B(S), there
exists an f ∈ B(S) such that fn → f uniformly. By definition of a Cauchy
sequence, we have that

∀ ε > 0 ∃nε such that ∀n,m > nε, sup
x∈S
|fn(x)− fm(x)| < ε

2

Now fix some x ∈ S. Obviously, in light of the above, the numbers fn(x)
form a Cauchy sequence of real (or complex) numbers. We know that the
space of real (or complex) numbers is complete and therefore, for a fixed x,
the sequence fn(x) converges to some limit which we denote f(x). In other
words

∀x ∈ S,∀ ε > 0,∃nε,x such that ∀n > nε,x, |fn(x)− f(x)| < ε

2

Now we note that

|fn(x)− f(x)| = |fn(x) + fm(x)− fm(x)− f(x)

= |fn(x)− fm(x) + (fm(x)− f(x))|
≤ |fn(x)− fm(x)| − |fm(x)− f(x)|

Now choose n and m such that n > nε, m > nε and m > nε,x. Then it
follows that

|fn(x)− f(x)| ≤ |fn(x)− fm(x)| − |fm(x)− f(x)|

=
ε

2
+
ε

2
= ε

for all x ∈ S. Therefore the left hand side is less than or equal to ε for all
x ∈ S provided that n > nε. Since this nε is independent of x, we have that
fn(x)→ f uniformly.
It remains to show that f(x) is a bounded function. Indeed, choose n > nε
and

sup
x∈S
|f(x)| = sup

x∈S
|fn(x)− fn(x) + f(x)|

≤ sup
x∈S

(|fn(x)|+ |f(x)− fn(x)|)

≤ sup
x∈S
|fn(x)|+ sup

x∈S
|f(x)− fn(x)|

≤ sup
x∈S
|fn(x)|+ ε



CHAPTER 5. COMPLETENESS 20

Now, by assumption, fn(x) is bounded and therefore f(x) is also bounded.

Corollary 5.10. Consider C[a, b] equipped with the metric ρ(f, g) = supx∈[a,b] |f(x)−
g(x)|. Then C[a, b] is complete.

Proof. Since continuous functions on closed intervals [a, b] are bounded, we
know that any sequence fn of continuous must converge uniformly to a func-
tion f that is bounded on [a, b]. It suffices to show that f is continuous. In
other words, we have to show that

∀ ε > 0 ∃ δ > 0 such that if |x− y| < δ then |f(x)− f(y)| < ε

Indeed, we have that

|f(x)− f(y)| = |f(x) + fn(x)− fn(x) + fn(y)− fn(y)− f(y)|
= |f(x)− fn(x) + (fn(x)− fn(y)) + (fn(y)− f(y))|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

Now since fn → f uniformly, we can choose an nε such that for all n > nε,
|f(x)− fn(x)| < ε

3
and |f(y)− fn(y)| < ε

3
. Furthermore, by assumption, we

have that each fn is a continuous function. Therefore we can always find a δ
such that if |x− y| < δ then |f(x)− f(y)| < ε

3
. Hence

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε

whenever |x− y| < δ.

5.3 Series in Banach Spaces

Definition 5.11. Let X be a normed linear space. Then X is called a Ba-
nach space.

Example 5.12. Theorem 5.9 and Corollary 5.10 imply that B(S) and C[a, b]
are Banach spaces.
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For the following definitions and results, let xn be a sequence of elements
in a Banach space X.

Definition 5.13. Consider the series
∑∞

n=1. We say that this series is con-

vergent if the sequence σk =
∑k

n=1 xn is convergent in X. If σk → x ∈ X
as k →∞, we write

∑∞
n=1 xn = x.

Definition 5.14. Let σ =
∑∞

n=1 xn be a series. We say that σ is absolutely
convergent if

∑∞
n=1 ||xn|| <∞.

Theorem 5.15. Every absolutely convergent series in X is convergent in X.

Proof. Let σk =
∑k

n=1 xn and sk =
∑k

n=1 ||xn||. Since the series
∑∞

n=1 is
convergent, the sequence of positive numbers {sk} must also be convergent
and it is therefore a Cauchy sequence. We therefore have that

ρ(σm, σk) = ||σm − σk||

=

∣∣∣∣∣
∣∣∣∣∣

m∑
n=k+1

xn

∣∣∣∣∣
∣∣∣∣∣

≤
m∑

n=k+1

||xn||

= |sm − sk|

Now,

∀ ε > 0∃nε such that ∀m, k > nε, |sm − sk| < ε

Then let m, k > nε. It follows that

ρ(σm, σk) ≤ |sm − sk|
< ε

and thus {σn} is a Cauchy sequence in the Banach space and thus it must
converge.

Corollary 5.16. Let {fn} ⊆ B(S) be a sequence of bounded functions. If∑∞
n=1 sup |fn(x)| < ∞ then there exists a bounded function f ∈ B(S) such

that

sup
x∈S

∣∣∣∣∣f(x)−
k∑

n=1

fn(x)

∣∣∣∣∣ k→∞→ 0
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Furthermore, if S = [a, b] is a bounded interval and the functions fn are
continuous on [a, b] then f is also continuous.

Proof. Since B(S) and C[a, b] (with their usual norms) are Banach spaces,
the corollary follows from Theorem 5.15.

5.4 Contractions

Definition 5.17. Let (X, ρ) be a metric space and T : X → X a mapping.
We say that T is a contraction if ρ(Tx, Ty) ≤ cρ(x, y) for some 0 ≤ c < 1
and for all x, y ∈ X.

Example 5.18. Consider R equipped with the standard metric ρ(x, y). Then
function

f : R→ R

x 7→ x

2

is a contraction. Indeed, we have that

ρ(f(x), f(y)) =
∣∣∣x
2
− y

2

∣∣∣ =
1

2
|x− y| = 1

2
ρ(x, y)

Theorem 5.19. (Contraction Mapping Theorem)
Let T be a contraction on a complete metric space (X, ρ). Then the equation
Tx = x has a unique solution. Furthermore, for any x0 ∈ X, the sequence
xn = T nx0 converges to x.

Proof. Let n > m and fix x0 ∈ X. Since T is a contraction we know that
ρ(Tx, Ty) ≤ cρ(x, y) for some 0 ≤< c < 1. We have that

ρ(xm, xn) = ρ(Tmx0, T
nx0)

≤ cρ(Tm−1x0, T
n−1x0)

≤ c2ρ(Tm−2x0, T
n−2x0)

...

≤ cmρ(x0, T
n−mx0)
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Now the triangle inequality implies that

ρ(x0, T
n−mx0) ≤ ρ(x0, Tx0) + ρ(Tx0, T

n−mx0)

≤ ρ(x0, Tx0) + ρ(Tx0, T
2x0) + ρ(T 2x0, T

n−mx0)

≤ ρ(x0, Tx0) + ρ(Tx0, T
2x0) + ρ(T 2x0, T

3x0) + ρ(T 3x0, T
n−mx0)

...

≤ ρ(x0, Tx0) + ρ(Tx0, T
2x0) + · · ·+ ρ(T n−m−1x0, T

n−mx0)

≤ ρ(x0, Tx0) + cρ(x0, Tx0) + . . . cn−m−1ρ(x0, Tx0)

= (1 + c+ c2 + · · ·+ cn−m−1)ρ(x0, Tx0)

We now note that 1 + c2 + · · · + cn−m−1 = 1−cn−m
1−c . Since 0 ≤ c < 1 then

obviously 0 ≤ cn−m < 1. It thus follows that 1+c2+ · · ·+cn−m−1 ≤ (1−c)−1.
Combining the above results, we see that

ρ(xm, xn) ≤ cmρ(x0, T
n−mx0)

≤ cm(1 + c+ c2 + · · ·+ cn−m−1)ρ(x0, Tx0)

≤ cm(1− c)−1ρ(x0, Tx0)

for all x0 ∈ X and for all n > m. Obviously the right hand side can be made
arbitrarily small by choosing large m. This implies that {xn} is a Cauchy
sequence. Furthermore, since the space is complete, {xn} converges to a
limit x ∈ X. By Lemma 4.4, we know that the function f(x) = ρ(x, Tx) is
a continuous function. Therefore

ρ(x, Tx) = lim
n→∞

ρ(xn, Tx)

= lim
n→∞

ρ(T nx0, Tx)

≤ c lim
n→∞

ρ(T n−1x0, x)

= c lim
n→∞

ρ(xn−1, x)

= 0

Thus ρ(x, Tx) = 0 and hence Tx = x. Now let y be another solution such
that Ty = y. Then

0 = ρ(Tx, Ty)− ρ(x, y)

≤ cρ(x, y)− ρ(x, y)

= (c− 1)ρ(x, y)
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hence ρ(x, y) = 0. We therefore see that x is the only solution of the equation
Tx = x.

Remark. The previous theorem allows us to construct an approximate so-
lution to an equation of the form Tx = x. We choose an aribitrary element
x0 ∈ X and evaluate xm = Tmx0 for sufficiently large m. This is called the
method of sucessive approximations.

Corollary 5.20. The error for the method of successive approximations is
given by

ρ(xm, x) ≤ cm(1− c)−1ρ(x0, Tx0)

for all x0 ∈ X and m ≥ 0.

Proof. This follows easily from the previous theorem and passing to the limit
as n→∞.

Example 5.21. Let f be a real-valued function defined on an interval [a, b]
such that f(x) ∈ [a, b] and

|f(x)− f(y)| ≤ c|x− y| (5.1)

for all x, y ∈ [a, b] and some constant c < 1. Then for any x0 ∈ [a, b],
the sequence x1 = f(x0), x2 = f(x1), x3 = f(x2), . . . converges to the only
solution of the equation f(x) = x.

Remark. Inequality (5.3) is referred to as the Lipschitz condition. If
f is continuously differentiable on [a, b] then by the mean value theorem, f
satisfies the Lipschitz condition with c = supx∈[a,b] |f ′(x)|.
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Connectedness

Definition 6.1. Let X be a metric space and A ⊆ X. We say that A is
connected if there does not exist two non-empty open sets U1, U2 ⊆ X such
that U1 ∩ U2 = ∅ and A ⊆ U1 ∪ U2. If such a pair U1, U2 does exist, we say
that U1 and U2 are a disconnection of the disconnected set A.

Definition 6.2. Let (X, ρ) be a metric space and let x1, x2 ∈ X. A contin-
uous function f : [0, 1] → X such that f(0) = x1 and f(1) = x2 is called a
path from x1 to x2. A subset A ⊆ X is said to be path-connected if there
exists a path that lies entirely within A between any two points of A.

Example 6.3. A connected set is not necessarily path-connected. An exam-
ple is the topologists sine curve:{(

x, sin
1

x

) ∣∣∣∣ x ∈ (0, 1]

}
∪ { (0, 0) } ⊆ R2

This set is connected but not path-connected as the point (0, 0) cannot be
reached by a non-constant path lying in the set.

Theorem 6.4. A path-connected set is necessarily connected.

Proof. Let A be a path-connected set and assume that A is not connected. In
particular, let U1 and U2 form a disconnection of A. We have that A ⊆ U1∪U2

and U1 ∩ U2 = ∅. Choose x1 ∈ U1 ∩ A and x2 ∈ U2 ∩ A. Furthermore, let
f be a path in A from x1 to x2. By definition, f is a continuous map and
therefore the inverse images f−1(U1) and f−1(U2) are open subsets of [0, 1].

25
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Obviously, these sets are non empty and

f−1(U1) ∩ f−1(U2) = ∅
f−1(U1) ∪ f−1(U2) = [0, 1]

In other words, f−1(U1) and f−1(U2) form a disconnection of [0, 1].
Now let r1 := sup f−1(U1). Since 0 ∈ f−1(U1) and f−1(U1) is open in [0, 1],
there exists a positive number r < 1 such that the open ball Br(0) = [0, r)
lies in f−1(U1). Therefore 0 < r ≤ r1. Similarly, since 1 ∈ f−1(U2) and
f−1(U2) is open, there exists r < 1 such that Br(1) = (r, 1] lies in f−1(U2).
Hence no point of f−1(U1) lies in (r, 1] and therefore r1 ≤ r < 1.
Now, the point r1 cannot belong to f−1(U1). Indeed if it did then there
would exist an ε > 0 such that (r1 − ε, r1 + ε) ⊆ f−1(U1), contradicting
the fact that r1 is the supremum. However, every neighbourhood of r1 must
contain a point from f−1(U1). Hence if r1 ∈ f−1(U2), there would exist an
open neighbourhood contained in f−1(U2) which contains points of f−1(U1),
contradicting the fact that they are disconnected. But then r1 /∈ f−1(U1) ∪
f−1(U2) which is a contradiction.

Lemma 6.5. Any interval of R is path-connected.

Proof. Let A be an interval and x1, x2 ∈ A such that x1 < x2. Then [x1, x2] ⊆
A. Now define f(t) = (1− t)x1 + tx2 for 0 ≤ t ≤ 1. Obviously, f(t) ∈ [x1, x2]
hence f(t) is a path between x1 and x2 lying in A. We thus see that A is
path connected.

Lemma 6.6. Any ball in a Banach space (over R or C) is path connected.

Proof. Let A be an open (or closed) ball and choose x1 ∈ A. Then f(t) =
(1− t)x1 + tx for 0 ≤ t ≤ 1 is a path from x1 to x. We have that

||f(t)− x|| = ||(1− t)x1 + tx− x|| = (1− t)||x1 − x|| ≤ ||x1 − x||

for all t ∈ [0, 1]. Therefore f(t) is contained in A. Hence given any ball, we
can find a path between any of its points and its centre. Since the ball is
arbitrary and can be centered anywhere with any positive radius, the whole
space must be path connected.

Theorem 6.7. Let X be a Banach space. Then every open connected set in
X is path-connected.
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Proof. Let A be an open and connected set and fix x ∈ A. We define

U1 = { y ∈ A | there is a path from x to y }

It can easily be seen that U1 is path connected. Indeed, given any two points
y, z ∈ A, let f1 be the path from x to y and f2 the path from x to z. Then

f(t) =

{
f1(−2t) if 0 ≤ t ≤ 1

2

f2(2t− 1) if 1
2
≤ t ≤ 1

is a path from y to z. If U1 coincides with A then A is path-connected and
we are done. Hence assume that U1 does not coincide with A. Consider
U2 = C(U1) ∩ A. Since A is an open set, we can excise an open ball Br(y)
around any point y ∈ A.
Now, Br(y) ∩ U1 is empty. Indeed if it contains a point z then z ∈ U1 and
there exists a path between x and z. Since z is also in Br(y) and all balls
in a Banach space are path connected, there must also exist a path between
y and z. But then we can construct a path between x and y which would
imply that y ∈ U1 which is absurd. Hence Br(y) ⊆ U2. But y is an arbitrary
point and hence U2 is open. We also see that A = U1 ∪U2. But then U1 and
U2 are a disconnection of A which contradicts that A is connected. Therefore
U2 = ∅ and A = U1 and it is path-connected.

Theorem 6.8. Every connected subset of R is necessarily an interval.

Proof. Let A ⊆ R be a connected subset of the real line. Furtermore, let
a = inf A and b = supA (if A is unbounded then we allow a = −∞ and/or
b = ∞). We claim that A necessarily contains every point between a and
b. Fix such a point x. Since a < x < b, there must exist some point α ∈ A
such that α < x (otherwise x would be a lower bound greater than a which is
absurd). Similarly, there exists a βinA such that x < β. Now suppose that
x ∈ A. Then (−∞, x) (which contains α) and (x,∞) form a disconnection of
A. This is a contradiction to the fact that A is a connected subset. Therefore
x ∈ A. Since x is an arbitrary point, A must contain all points between a
and b and is therefore an interval.

Theorem 6.9. Let (X, ρ) and (Y, σ) be metric spaces and f : X → Y a
continuous mapping. Then the image of any connected subset A of X under
f is a connected subset of Y .
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Proof. Let A ⊆ X be a connected subset and denote B = f(A) ⊆ Y . We
need to show that B is a connected subset of Y . Suppose that B is dis-
connected. In particular, there exist two open sets U1, U2 ⊆ Y such that
U1 ∩ U2 = ∅ and B ⊆ U1 ∪ U2. We see that since U1 and U2 are open sets,
f−1(U1) and f−1(U2) are also open since the inverse image of open sets under
a continuous map is always open. Since U1 ∩ U2 = ∅, we must have that
f−1(U1 ∩ U2) = f−1(∅). This implies that f−1(U1) ∩ f−1(U2) = ∅. Further-
more, f−1(B) ⊆ f−1(U1 ∪ U2) = f−1(U1) ∪ f−1(U2). Therefore f−1(U1) and
f−1(U2) form a disconnection of A. But this contradicts the fact that A is
connected. Therefore B must be connected.

Example 6.10. Let X be a metric space equipped with the discrete metrox.
Then every subset of X is necessarily open. We can see that every set which
consists of more than one element can be represented as a union of two or
more disjoint singleton sets and is therefore disconnected. We call such a
space totally disconnected.



Chapter 7

Compactness

Definition 7.1. Let (X, ρ) be a metric space and K ⊆ X a subset. We say
that K is sequentially compact if any sequence of elements of K has a
subsequence which converges to a limit in K.

Remark. In light of the previous definition, it is obvious that K is compact
in (X, ρ) if and only if it is compact in (X, σ) for any metric σ equivalent to
ρ.

Definition 7.2. Let Ŝ be a family of subsets of a metric space (X, ρ) and
K ⊆ X a subset. We say that Ŝ is a cover of K if K ⊆ ∪S∈ŜS. If each

member of Ŝ is open then we call it an open cover of K. Furthermore,
if Ŝ is a cover of K and a subset Ŝ0 ⊆ Ŝ also covers K then Ŝ0 is called
a subcover of Ŝ. A cover (or subcover) is called dinite if it has a finite
number of members.

Definition 7.3. Let (X, ρ) be a metric space and K ⊆ X a subset. We say
that K is compact if every open cover of K has a finite subcover.

Theorem 7.4. A subset of a metric space is compact if and only if it is
sequentially compact.

Definition 7.5. Let (X, ρ) be a metric space and K ⊆ X a subset. We say
that K is bounded if for some x ∈ X and r > 0 we have that K ⊆ Br(x).

Theorem 7.6. A compact set K of a metric space (X, ρ) is necessarily
bounded and closed.

29
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Proof. Suppose that K is not bounded. Then for every x ∈ X, the family of
open balls Bn(x) for n = 1, 2, . . . form an open cover of K which does not
have a finite subcover. This is a contradiction to the fact that K is compact.
Now suppose that K is not closed. Then it does not contain at least one of its
limit points. Consider a sequence of elements of K which converges to this
limit point. Every subsequence of this sequence converges to the same limit
point. Hence there exists a sequence of elements of K that does not have
a subsequence which converges to a limit K. Hence K is not sequentially
compact. But a set is sequentially compact if and only if it is compact which
contradicts the fact that K is compact.

Lemma 7.7. Let (X, ρ) be a metric space and K ⊆ X a compact set. Any
closed subset B ⊆ K is necessarily compact.

Proof. LetK be a compact set andB ⊆ K a closed subset. Now any sequence
{xn} ⊆ B must contain a convergent subsequence as {xn} ⊆ K which is a
sequentially compact set. Since B is closed, it must contain all of its limit
points. Hence {xn} has a subsequence which converges to a limit in B and
B is thus sequentially compact and therefore compact.

Lemma 7.8. Let (x, ρ) and (Y, σ) be metric spaces and K ⊆ X and L ⊆ L
compact subsets. Then K × L ⊆ X × Y with the metric

d((x1, y1), (x2, y2)) =
√
ρ(x1, x2)2 + σ(y1, y2)2

is compact.

Proof. Let (xn, yn) be an arbitrary sequence in K × L, we claim that it has
a subsequence that converges to a limit (x, y) ∈ K ×L. Since K is compact,
there is a subsequence xnk which coverges to a limit x ∈ K as k →∞. Since
L is compact, there sequence ynk has a subsequence ynki which converges to a
limit y ∈ L as i→∞. Since xnk → x as k →∞ we also have that xnki → x
as i→∞.
Now by the definition of convergence, we can reformulate the above as
ρ(xnki , x)→ 0 and σ(ynki , y)→ 0 as i→∞. This implies that d((xnki , ynki ), (x, y))→
0 as i → ∞. In other words, (xnki , ynki ) → (x, y) ∈ K × L. Therefore any
sequence (xn, yn) of elements of K × L has a subsequence that converges to
a limit in K × L. Therefore K × L is sequentially compact and is hence
compact.
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Theorem 7.9. A bounded and closed subset of Rn is necessarily compact.

Proof. Since any bounded subset lies within a closed cube Qn, we just have
to show that the cube is compact and the compactness of the subset will
follow from Lemma 7.7. Now if Q1 and Qn−1 are both compact then by by
Lemma 7.8, Qn is also compact. Therefore it is sufficient to show that a
closed interval of R is compact and we will then be able to apply induction.
Let {xn} be a sequence of elements of the closed interval [a, b] where b > a.
We begin by splitting the interval into two intervals of equal length δ

2
where

δ = b − a. Obviously one (or even both) of the intervals contain infinitely
many elements of {xn}. Choose such an element from that interval and
denote it y1.
Now we again split the interval of length δ

2
into two intervals of length δ

4
.

Again one of these two intervals will contain infinitely many elements of
{xn}. We choose one of this elements, distinct from y1, and denote it by y2.
Continuing like this, we obtain a sequence {yk} of the sequence {xn} such
that each yk lies in an interval of length 2−k0δ for all k ≥ k0 for some constant
k0. It is clear that {yk} is a Cauchy sequence.
Now since R is a complete metric space, {yk} must converge to some limit.
But [a, b] is a closed set and must contain all of its limit points and hence {yk}
converges to an element of [a, b]. We have shown that an arbitrary sequence
{xn} has a convergent subsequence {yn} which converges to an element of
[a, b] and therefore [a, b] must be sequentially compacy. It thus follows that
[a, b] is compact.

Theorem 7.10. Let (X, ρ) and (Y, d) be metric spaces and T : X → Y a
continuous mapping. Then if K ⊆ X is a compact set, T (K) is necessarily
compact.

Proof. Let yn be an arbitrary sequence of elements of T (K). Then yn =
Txn for some elements of a sequence xn ∈ K. Since K is compact, it is
also sequentially compact. We therefore have that {xn} has a subsequence
{xnk} which converges to a limit x ∈ K. Now Theorem 4.2 implies that the
sequence ynk = Txnk converges to the limit Tx ∈ T (K). Hence T (K) is
sequentially compact and is thus compact.

Definition 7.11. A metric space (X, ρ) is said to be compact if the set X
is itself compact.

Theorem 7.12. A compact metric space (X, ρ) is necessarily complete.
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Proof. Let {xn} ⊆ X be an arbitrary Cauchy sequence. Since X is compact,
this sequence has a subsequence that converges to a limit in X. Now Lemma
5.3 implies that {xn} also converges to this limit. Hence any Cauchy sequence
in X converges to a limit in X and X is thus complete.

Theorem 7.13. Let (X, ρ) and (Y, σ) be two compact metric spaces and T :
(X, ρ) → (Y, σ) a continuous bijective mapping. Then the inverse mapping
T−1 is also continuous.

Proof. By Theorem 4.8, we know that T−1 is continuous if and only if B ⊆ X
closed =⇒ T (B) ⊆ Y is also closed. If B is closed then by Lemma 7.7,
it is necessarily compact as the subset of a compact space. The image of
compact sets under continuous mappings are compact and therefore T (B)
is compact. It follows that T (B) must be bounded and, more importantly,
closed as required.

Example 7.14. Let X be the space of continuously differentiable functions
on a closed interval [a, b] and ρ and σ be metrics on X given by

ρ(f, g) = sup
x∈[a,b]

|f(x)− g(x)|+ sup
x∈[a,b]

|f ′(x)− g′(x)|

σ(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

The map (X, ρ) → (X, σ) is a bijection and is continuous because fn
ρ→

f =⇒ fn
σ→ f . However, the inverse mapping is not continuous. Consider

the sequence fn(x) = n−1 sin(n2x) converges to the zero function with respect
to the metric σ but does not converge with respect to the metric ρ.

Definition 7.15. We say that a function f defined on a metric space (X, ρ)
is uniformly continuous if

∀ ε > 0∃ δ > 0 such that ∀x, y, ρ(x, y) < δ =⇒ |f(x)− f(y)| < ε

Remark. Note that this definition is subtley different from that of ordinary
continuity. Ordinary continuity guarantees the existence of a δ for any x ∈ X
but such a δ may be dependent on x. In other words, the δ depends on the
distance between x and y. On the other hand, uniform continuity guarantees
the existence of a single delta regardless of the given x and y.

Theorem 7.16. Let (X, ρ) be a compact metric space. Then any continuous
function f on (X, ρ) is uniformly continuous.
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Proof. Fix ε > 0. Since f is a continuous function, we have that, by definition
there exists a δx > 0 such that

ρ(y, x) < δx =⇒ |f(y)− f(x)| < ε

2

Now let Jx = B δx
2

(x) be an open ball. The collection on balls {Jx}x∈X
obviously forms an open cover of X. Now since X is compact, such an
open cover must contain a finite subcover. That is to say that there exists
a finite collection of points x1, . . . , xk such that ∪kn=1Jxn . Now define δ =
min{δx1 , . . . , δxk}.
Now let x, y ∈ X and ρ(x, y) < δ. Since X = ∪kn=1, we can always find
an n such that x ∈ Jxn . In other words, ρ(x, xn) < ∂xn

2
. Now the triangle

inequality implies that

ρ(y, xn) ≤ ρ(x, xn) + ρ(x, y) <
δxn
2

+ δ ≤ δxn

Hence we see that

|f(y)− f(x)| ≤ |f(y)− f(xn)|+ |f(xn)− f(x)| < ε

2
+
ε

2
= ε

Therefore we have shown that ∀ ε > 0 ∃ δ > 0 such that ∀x, y, ρ(x, y) <
δ =⇒ |f(x)− f(y)| < ε.

Definition 7.17. Let (K, ρ) be a metric space. Then C(K) denotes the
linear space of continuous functions f : K → R equipped with the norm
||f || = supx∈K |f(x)|.

Theorem 7.18. (Weierstrass’ Approximation Theorem)
Let P represent the set of polynomials in C[a, b] for some closed bounded
interval [a, b]. Then P = C[a, b].

Proof. The proof follows from the Stone-Weierstrass theorem below.

Remark. The previous theorem is equivalent to the fact that any continu-
ous function on a closed bounded interval can be uniformly approximated by
polynomials.

Definition 7.19. Let X be a linear space and let x, y ∈ X. We say that X
is an algebra if xy ∈ X.



CHAPTER 7. COMPACTNESS 34

Example 7.20. C(K) is an algebra.

Definition 7.21. Let X be an algebra and A ⊆ X. We say that A is a
subalgebra of X if A is a linear space and if x, y ∈ A then xy ∈ A.

Definition 7.22. Let (X, ρ) be a metric space and A ⊆ X. We say that A
is dense in X if A = X.

Theorem 7.23. (Stone-Weierstrass)
Let K be a compact metric space and P a subalgebra of C(K). If

1. P contains the constant functions

2. for all x, y ∈ K, there exists a function f ∈ P such that f(x) 6= f(y)

then P = C(K). In other words, P is dense in C(K).

Example 7.24. Consider finite sums of the form

c+
k∑

n=1

an sin(nx) +
l∑

j=1

bjcos(jx)

for some constants c, an, bj. Such sums are referred to as trigonometric poly-
nomials. We shall show that the Stone-Weierstrass theorem implies that the
trigonometric polynomials are dense in C[a, b] for any closed bounded inter-
val [a, b] provided that b− a < 2π.
The product formulas for trigonometric functions confirm that the set of
trigonometric polynomials is a subalgebra of P.
Now, if sin(nx) = sin(ny) and cos(nx) = cos(ny) for all n, the product
formulas imply the following

0 = sin(nx)− sin(ny) = 2 cos
n(x+ y)

2
sin

n(x− y)

2

0 = cos(ny)− cos(nx) = 2 sin
n(x+ y)

2
sin

n(x− y)

2

It follows that sin n(x−y)
2

= 0 for all n. This is only possible if x−y
2

= kπ for
some integer k. But if b−a < 2π then x = y and therefore the trigonometric
polynomials are dense in C[a, b].



Chapter 8

Integration

8.1 Step functions

Definition 8.1. Let ψ be a complex valued function on a bounded interval
[a, b]. We say that ψ is a step function if there exists a finite collection of
intervals Ik ⊆ [a, b] with k = 1, 2, . . . , N such that

1. ∪k=1Ik = [a, b]

2. Ij ∩ Ik = ∅ for j 6= k

3. ψ is constant on each individual Ik

Remark. Any step function ψ is determined by a collection of intervals Ik
and constants ck = ψ|Ik . We write ψ ∼ { Ik, ck } if ψ is constant on the
intervals on Ik and takes the value ck on the interval Ik.

Lemma 8.2. The set of all step functions form a linear space. In other
words, let ψ1, ψ2 be step functions and λ ∈ C. Then

1. λψ1 is a step function

2. ψ1 + ψ2 is a step function

Proof.

Part 1: Let ψ ∼ { Ik, ck }. Then λψ ∼ { Ik, λck }. Therefore λψ is a step
function.

Part 2: Now let ψ1 ∼ { Ij, cj } for j = 1, . . . , N1 and ψ2 ∼ { Ĩk, c̃k } for
k = 1, . . . , N2. The intersections Ij∩Ĩk are obviously all disjoint intervals and

35
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Ij∩ Ĩk ⊆ [a, b]. By definition, we have that ∪N1
j=1Ij = [a, b] and ∪N2

k=1Ĩk = [a, b].
Therefore, we have that

N1⋃
j=1

N2⋃
k=1

(
Ij
⋂

Ĩk

)
= [a, b]

Hence the collection of intervals { Ij ∩ Ĩk } for j = 1, . . . , N1 and k = 1, . . . , N2

satisfies the first two conditions of the definition of a step function. Further-
more, the function ψ1 + ψ2 is constant on each interval Ij ∩ Ĩk and takes the
value cj+c̃k. Hence ψ1+ψ2 is a step function and ψ1+ψ2 ∼ { Ij ∩ Ĩk, cj + c̃k }.

Definition 8.3. Consider the step functions as a subset X of B[a, b], the set
of bounded functions on a closed bounded interval [a, b. Then the set R[a, b] =
X is called the set of Riemann integrable functions and consists of all step
functions and functions f that can be approximated by step functions.

Remark. By Corollary 3.19, f ∈ R[a, b] if and only if there exists a sequence
of step functions ψn converging to f in B[a, b].

Theorem 8.4. The continuous functions C[a, b] are a subset of the Riemann
integrable functions R[a, b].

Proof. Let f ∈ C[a, b] be a continuous function. Then, since the interval [a, b]
is comapct, f is uniformly continuous (by Theorem 7.16). By definition, this
means that

∀ ε > 0,∃ δ > 0 such that ∀x, y, |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ε

Therefore we can choose a δn such that |f(x)−f(y)| ≤ 1
n

whenever |x− y| ≤
δn. We now split the interval [a, b] into the union of pairwise disjoint intervals
Ik of lengths not greater than δn. Now choose an arbitrary point xk ∈ Ik for
each k and let ck = f(xk). Denote ψ ∼ { Ik, ck } to be the corresponding step
function.
Now choose an element x ∈ [a, b]. Then x ∈ Ik for some k and, therefore,
|x− xk| ≤ δn. Furthermore,

|f(x)− ψn(x)| = |f(x)− ck| = |f(x)− f(xk)| ≤
1

n
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Thus |f(x)− ψn(x)| ≤ 1
n

for all x ∈ [a, b]. This implies that

sup
x∈[a,b]

|f(x)− ψn(x)| ≤ 1

n

Now, as n→∞, the above goes to 0 and thus f ∈ R[a, b].

Definition 8.5. Let f be a complex-valued function on a closed, bounded
interval [a, b]. We say that f is piecewise continuous if there exists a
finite collection of intervals Ik ⊆ [a, b] for k = 1, . . . , N such that

1. ∪Nk=1Ik = [a, b]

2. Ij ∩ Ik = ∅ for j 6= k

3. f is continuous inside each interval Ik and has a finite limit at the end
points of the interval Ik

Corollary 8.6. Let f be a piecewise continuous function. Then f ∈ R[a, b].

Proof. By the previous Theorem, we can always find, given an interval Ik, a
sequence of step functions ψ

(
nk) such that

sup
x∈Ik
|f(x)− ψ(k)

n (x)| → 0 (8.1)

as n→∞. We now extend ψ
(k)
n by zero to the whole interval [a, b] and define

ψn(x) =
N∑
k=1

ψ(k)
n (x)

Then ψn is a step function defined on the interval [a, b] and because of (8.1),
we have that

sup
x∈[a,b]

|f(x)− ψn(x)| → 0

as n→∞. Hence f ∈ R[a, b].

Definition 8.7. Let ψ be a step function and ψ ∼ { Ik, ck } for k = 1, . . . , N .
Then we define the integral of ψ(x) with respect to x between a and b to be∫ b

a

ψ(x) dx =
N∑
k=1

ckµ(Ik)

where µ(Ik) is the length of the interval Ik.
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Lemma 8.8. Let ψ1, ψ2 be step functions and λ ∈ C a constant. Then∫ b

a

λψ1(x) dx = λ

∫ b

a

ψ1(x) dx (8.2)∫ b

a

ψ1(x) + ψ2(x) dx =

∫ b

a

ψ1(x) dx+

∫ b

a

ψ2(x) dx (8.3)

Proof.

Part 1: This follows immediately from the definition of the integral and the
fact that λψ1 ∼ { Ik, λck }.

Part 2: Let ψ1 ∼ { Ij, cj } for n = 1, . . . , N1 and ψ2 ∼ { Ĩk, c̃k } for k =
1, . . . , N2. Then

ψ1 + ψ2 ∼ { Ij ∩ Ĩk, cj + c̃k }

for j = 1, . . . , N1 and k = 1, . . . , N2. Therefore∫ b

a

ψ1(x) + ψ2(x) dx =

N1∑
j=1

N2∑
k=1

cj + c̃kµ(Ij ∩ Ĩk)

=

N1∑
j=1

(
cj

N2∑
k=1

µ(Ij ∩ Ĩk)

)
+

N2∑
k=1

(
c̃k

N1∑
j=1

µ(Ij ∩ Ĩk)

)

=

N1∑
j=1

cjµ(Ij) +

N2∑
k=1

c̃kµ(Ĩk)

=

∫ b

a

ψ1(x) dx+

∫ b

a

ψ2(x) dx

Lemma 8.9. Let ψ be a step function. Then∣∣∣∣∫ b

a

ψ(x) dx

∣∣∣∣ ≤ (b− a) sup
x∈[a,b]

|ψ(x)|
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Proof. We have that∣∣∣∣∫ b

a

ψ(x) dx

∣∣∣∣ =

∣∣∣∣∣
N∑
k=1

ckµ(Ik)

∣∣∣∣∣
≤

N∑
k=1

|ck|µ(Ik)

≤ sup
x∈[a,b]

|ψ(x)|
N∑
k=1

µ(Ik)

= (b− a) sup
x∈[a,b]

|ψ(x)|

8.2 Definition and Basic Properties of Inte-

grals

Definition 8.10. Let f ∈ R[a, b] be a Riemann integrable function and ψn
such that n ∈ N a sequence of step functions convergeing to f in B[a, b]. We
define the integral of f(x) with respect to dx between a and b by∫ b

a

f(x) dx = lim
n→∞

∫ b

a

ψn(x) dx

Furthermore, we define
∫ a
b
f(x) dx = −

∫ b
a
f(x) dx.

Remark. This definition only makes sense if the limit actually exists and is
independent of the choice of sequence ψn. Assume that ψn → f in B[a, b].
Then ψn is a Cauchy sequence in B[a, b] and, by definition,

sup
x∈[a,b]

|ψ(x)− ψm(x)| → 0

as m,n→∞. Therefore, by Lemma 8.8 and Lemma 8.9, we have that∣∣∣∣∫ b

a

ψn(x) dx−
∫ b

a

ψm(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(ψn(x)− ψm(x)) dx

∣∣∣∣
≤ (b− a) sup

x∈[a,b]
|ψn(x)− ψm(x)| → 0
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as m,m → ∞. Hence the sequence
∫ b
a
ψn(x) is Cauchy and the limit must

exist.
Now let ψ̃n be another sequence of step functions converging to f in B[a, b].
Then

sup
x∈[a,b]

|ψn(x)− ψ̃n(x)| ≤ sup
x∈[a,b]

|ψn(x)− f(x)|+ sup
x∈[a,b]

|f(x)− ψ̃n(x)| → 0

as n→∞. Hence∣∣∣∣∫ b

a

ψn(x) dx−
∫ b

a

ψ̃n(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(
ψn(x)− ψ̃n(x)

)
dx

∣∣∣∣
≤ (b− a) sup

x∈[a,b]
|ψn(x)− ψ̃n(x)|

as n→∞. Hence the limit does not depend on the choice of sequence ψn.

Lemma 8.11. Let f ∈ R[a, b]. Then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ (b− a) sup
x∈[a,b]

|f(x)|

Proof. Let ψn be a sequence of step functions that converge to f . By Lemma
8.9 and the triangle equality, it follows that∣∣∣∣∫ b

a

ψn(x) dx

∣∣∣∣ ≤ (b− a) sup
x∈[a,b]

|ψn(x)|

= (b− a) sup
x∈[a,b]

|f(x)|+ (b− a) sup
x∈[a,b]

|ψn(x)− f(x)|

Therefore∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫ b

a

ψn(x) dx

∣∣∣∣
= lim

n→∞

∣∣∣∣∫ b

a

ψn(x) dx

∣∣∣∣
≤ (b− a) sup

x∈[a,b]
|f(x)|+ (b− a) lim

n→∞
sup
x∈[a,b]

|ψn(x)− f(x)|

= (b− a) sup
x∈[a,b]

|f(x)|
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Definition 8.12. Let X be a linear space. A linear map F : X → C is said
to be a linear functional on X.

Theorem 8.13. Let f ∈ R[a, b] be a Riemann integrable function. Then the
map

f →
∫ b

a

f(x) dx

is a linear uniformly continuous functional on R[a, b].

Proof. We first show that the functional is linear. Let f, g ∈ R[a, b] and
λ, µ ∈ C. Let ψn and φn such that n ∈ N be a sequence of step functions
that converge to f and g respectively. Then by Lemma 8.8, we have that∫ b

a

(λψn(x) + µφn(x)) dx = λ

∫ b

a

ψn(x) dx+ µ

∫ b

a

φn(x) dx

Now, taking the limit as n→∞ on both sides of the above equation, we see
that the map must be linear.
We now show that the functional is uniformly continuous. In order to do this,
we need to show that ∀ ε > 0,∃ δ > 0 such that whenever supx∈[a,b] |f(x) −
g(x)| < δ then |

∫ b
a
f(x) dx−

∫ b
a
g(x) dx| < ε. Lemma 8.11 and the linearity

of the functional imply that∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

g(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x)− g(x)) dx

∣∣∣∣
≤ (b− a) sup

x∈[a,b]
|f(x)− g(x)|

Now fix ε > 0. It is easy to see that for δ = (b−a)−1ε, whenever supx∈[a,b] |f(x)−
g(x)| < δ then |

∫ b
a
f(x) dx−

∫ b
a
g(x) dx| < ε.

Definition 8.14. Let f : [a, b]→ R be a function. We denote

f+(x) =

{
f(x) if f(x) ≥ 0
0 if f(x) < 0

, f−(x) =

{
0 if f(x) ≥ 0
−f(x) if f(x) < 0

Remark. Obviously, f+ and f− are non-negative functions on [a, b] and
f(x) = f+(x) − f−(x), |f(x)| = f+(x) + f−(x) and f+(x)f−(x) = 0. Hence
any real-valued function can be represented as a linear combination of non-
negative functions. Any complex calued function f is a linear combination
of real valued functions Re(f) and Im(f) and therefore it can also be repre-
sented as a linear combination of non-negative functions.
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Proposition 8.15. Let f ∈ R[a, b] be a non-negative Riemann integrable

function. Then
∫ b
a
f(x) dx ≥ 0.

Proof. Let ψn such that n ∈ N be a sequence of step functions that converges
to f . Now,

|f(x)− (ψn)+(x)| ≤ |f(x)− ψn(x)|
=⇒ sup

x∈[a,b]
|f(x)− (ψn)+(x)| ≤ sup

x∈[a,b]
|f(x)− ψn(x)|

for all x ∈ [a, b]. Therefore, (ψn)+ also converges to f . Obviously,
∫ b
a
(ψn)+(x) dx ≥

0 for all n. Passing to the limit n→∞, we see that
∫ b
a
f(x) dx ≥ 0.

Proposition 8.16. Let f ∈ R[a, b] be a Riemann integrable function. Then
|f | ∈ R[a, b] and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx

Proof. Let ψn such that n ∈ N be a sequence of step functions convergent
to f in B[a, b]. Then obviously, the sequence |ψn| converges to |f | in B[a, b].
Therefore |f | ∈ R[a, b].
The inequality holds for any step function ψn and thus, passing to the limit
n→∞, we obtain the desired result.

Proposition 8.17. Let f ∈ R[a, b] be a Riemann integrable function and
c ∈ [a, b]. Then ∫ a

b

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

Proof. It suffices to show the equality for step functions, after which the
general result follows by passing to the limit n→∞.
Let ψ be a step function and ψ ∼ { Ik, ck }. Let c ∈ Ik0 for some k0. Now
denote I ′k0 = {x ∈ Ik0 | x < c } and I ′′k0 = {x ∈ Ik0 | x ≥ c }. Then∫ b

a

ψ(x) dx =
∑
k

ckµ(Ik)

=
∑
k<k0

ckµ(Ik) + ck0µ(Ik0) +
∑
k>k0

ckµ(Ik)

=

∫ c

a

ψ(x) dx+

∫ b

c

ψ(x) dx
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8.3 Unbounded Functions and Unbounded In-

tervals

Definition 8.18. Let c ∈ (a, b). If f ∈ R[a, c− ε] and f ∈ R[c+ δ, b] for all
positive ε and δ then we define∫ b

a

f(x) dx = lim
ε→0

∫ c−ε

a

f(x) dx+ lim
δ→0

∫ b

c+δ

f(x) dx

If either of the limits on the right hand side does not exist (or is ±∞) then

we say that
∫ b
a
f(x) dx is not defined.

Example 8.19. Let f(x) = x−1 and a < 0 < b. Then∫ −ε
a

f(x) dx = log ε− log |a| → −∞, ε→ 0∫ b

δ

f(x) dx = log b− log δ →∞, δ → 0

hence the integral
∫ b
a
f(x) is undefined. On the other hand,

lim
ε→0

(∫ −ε
a

f(x) dx+

∫ b

ε

f(x) dx

)
= lim

ε→0
(log b− log |a|)

= log b− log |a| (8.4)

Hence it is important that we consider seperate limits in the definition of
such an integral. The integral defined by Definition 8.18 is often referred to
as an improper integral while the integral in Equation (8.4) is referred to
as a singular integral.

Definition 8.20. Let f ∈ R[a, b] be a Riemann integrable function. Then
for all −∞ < a < b <∞, we define∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx∫ ∞
−∞

f(x) dx = lim
a→−∞

∫ a

−∞
f(x) dx+ lim

a→−∞

∫ ∞
a

f(x) dx
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Remark. Let (a, b) be an unbounded interval and R(a, b) the set of Rie-

mann integrable functions on (a, b). Then the map f →
∫ b
a
f(x) dx is

not a continuous functional on R(a, b) with respect to the standard metric
ρ(f, g) = supx∈(a,b) |f(x)− g(x)|. Indeed, consider the sequence of functions

fn(x) =

{
1
n

if − n ≤ x ≤ n
0 if otherwise

Such a sequence obviously converges to the zero function on B(−∞,∞) but∫∞
−∞ fn(x) dx = 2 for all n.

8.4 Integrals depending on a parameter

Theorem 8.21. Let [a, b] and [α, β] be bounded closed intervals and f(x, t)

a continuous function on [a, b] × [α, β]. Then
∫ b
a
f(x, t) dx is a continuous

function on [α, β].

Proof. The set [a, b]× [α, β] is compact. Hence f is uniformly continuous on
[a, b]× [α, β]. By definition, we have that

∀ ε > 0,∃ δ > 0 such that |t− t0| < δ =⇒ |f(x, t)− f(x, t0)| < ε

This means that

sup
x∈[a,b]

|f(x, t)− f(x, t0)| → 0

as t→ t0. Therefore∣∣∣∣∫ b

a

f(x, t) dx−
∫ b

a

f(x, t0) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x, t)− f(x, t0))

∣∣∣∣
≤ (b− a) sup

x∈[a,b]
|f(x, t)− f(x, t0)| → 0

as t→ t0 as required.

Theorem 8.22. Let [a, b] and [α, β] be two closed bounded intervals and
f(x, t) a continuous function on [a, b] × [α, β]. Furthermore, assume that f
is continuously differentiable in t. Then

d

dt

(∫ b

a

f(x, t) dx

)
=

∫ b

a

∂

∂t
f(x, t) dx
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Proof. We have that

d

dt

(∫ b

a

f(x, t) dx

)
= lim

δ→0
δ−1

(∫ b

a

f(x, t+ δ)−
∫ b

a

f(x, t) dx

)
Now applying the mean value theorem, we see that

fracddt

(∫ b

a

f(x, t) dx

)
= lim

δ→0
δ−1

(∫ b

a

f(x, t+ δ)−
∫ b

a

f(x, t) dx

)
= lim

δ→0

∫ b

a

δ−1[f(x, t+ δ)−
∫ b

a

f(x, t) dx]

= lim
δ→0

∫ b

a

∂f

∂t
(x, t+ δ∗) dx

where 0 ≤ δ∗ ≤ δ. Obviously, if δ → 0 then δ∗ → 0. Now by Theorem 8.21,
the integral is a continuous function and hence

d

dt

(∫ b

a

f(x, t) dx

)
= lim

δ∗→0

∫ b

a

∂f

∂t
(x, t+ δ∗) dx

=

∫ b

a

∂f

∂t
(x, t) dx

Theorem 8.23. Let [a, b] be a closed bounded interval and fn ∈ R[a, b] a se-
quence of Riemann integrable functions converging to a function f ∈ R[a, b].
In other words,

sup
x∈[a,b]

∣∣∣∣∣f(x)−
k∑

n=1

fn(x)

∣∣∣∣∣ k→∞→ 0

then

∞∑
n=1

(∫ b

a

fn(x) dx

)
=

∫ b

a

f(x) dx

Proof. Since the integral is a linear continuous functional on R[a, b], we have
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that ∫ b

a

f(x) dx =

∫ b

a

(
lim
k→∞

k∑
n=1

fn(x)

)
dx

= lim
k→∞

k∑
n=1

(∫ b

a

fn(x) dx

)
=
∞∑
n=1

(∫ b

a

fn(x) dx

)

Remark. This theorem essentially states that we can integrate a convergent
series term by term.

Corollary 8.24. Let [a, b] be a bounded interval and fn a sequence of con-
tinuously differentiable functions on [a, b] such that

1.
∑∞

n=1 fn(x) = f(x) for all x ∈ [a, b]

2. the series
∑∞

n=1 f
′
n is uniformly convergent

then the function f is continuously differentiable and

∞∑
n=1

f ′n(x) = f ′(x)

for all x ∈ [a, b].

Proof. Let
∑∞

n=1 = f̃ . Since the series
∑
n = 1∞ converges uniformly in

C[a, b], the function f̃ is continuous. Now, Theorem 8.23 and the fundamen-
tal theorem of calculus imply that∫ x

a

f̃(t) dt =
∞∑
n=1

∫ x

a

f ′n(t) dt =
∞∑
n=1

(fn(x)− fn(a)) = f(x)− f(a)

for all x ∈ [a, b]. Now, the fundamental theorem of calculus implies that f is
continuously differentiable and f ′ = f̃ .
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8.5 Picard’s Existence Theorem for First Or-

der Differential Equations

Let f be a real valued function defined on an open domain Ω ⊆ R2. Consider
the ordinary differential equation

dϕ

dx
= f(x, ϕ(x))

with the initial condition ϕ(x0) = ϕ0 where x is a one dimensional variable
and ϕ is a function of x and ϕ0 is some constant.

Theorem 8.25. (Picard’s Theorem)
Let (x0, ϕ0) ⊆ Ω and f a continuous function satisfying the Lipschitz condi-
tion

|f(x, y1)− f(x, y2)| ≤ c|y1 − y2|

where c is some constant. Then the ordinary differential equation above has
a unique solution on some interval [x0 − δ, x0 + δ].

Proof. Since f is a continuous function, we have that |f(x, y)| ≤ R, for some
constant R whenever (x, y) lie in a sufficiently small ball B around the point
(x0, φ0). Now we choose a small positive constant δ such that (x, y) ∈ B
whenever |x − x0| ≤ δ and |y − ϕ0| ≤ Rδ. Furthermore, we require that
cδ < 1.
We denote by C∗ the closed ball of radius Rδ centered at ϕ0 in the space
C[x0 − δ, x0 + δ]. In other words, C∗ is the set of all continuous functions φ
on the interval [x0 − δ, x0 + δ] such that

sup
x∈[x0−δ,x0+δ]

|φ(x)− ϕ0| ≤ Rδ

By Theorem 5.6, C∗ with the standard metric is complete.
By the fundamental theorem of calculus, with the initial condition ϕ(x0) = ϕ0

is equivalent to the integral equation

ϕ(x) = ϕ0 +

∫ x

x0

f(t, ϕ(t)) dt (8.5)
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Now consider the map T : C∗ → C[x0 − δ, x0 + δ] given by

Tψ(x) = ψ0 +

∫ x

x0

f(t, ψ(t)) dt

for x ∈ [x0 − δ, x0 + δ]. Then Equation (8.5) is equivalent to Tϕ = ϕ. Now,
if ψ ∈ C∗ then we have that

|Tψ(x)− ϕ0| ≤
∣∣∣∣∫ x

x0

f(t, ψ(t)) dt

∣∣∣∣ ≤ Rδ

This implies that T : C∗ → C∗. Now,

|Tψ1(x)− Tψ2(x)| ≤
∣∣∣∣∫ x

x0

|f(t, ψ1(t))− f(t, ψ2(t))| dt
∣∣∣∣

≤ cδ sup
t∈[x0−δ,x0+δ]

|ψ1(t)− ψ2(t)|


